Part Number Hot Search : 
SM16GZ GBU6J 74HC4 241DWG X5165S8 ADP3155 JA3504 60N03S
Product Description
Full Text Search
 

To Download AMMP-6220-TR2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Agilent AMMP-6220 6-20 GHz Low Noise Amplifier
Data Sheet
Features * 5x5 mm surface mount package * Broad Band performance 6-20 GHz * Low 2.5 dB typical noise figure * High 22 dB typical gain * 50 W input and output match * Single 3 V (55 mA) supply bias Description Agilent's AMMP-6220 is a high gain, low-noise amplifier that operates from 6 GHz to 20 GHz. The LNA is designed to be a easy-to-use component for any surface mount PCB application. The broad and unconditionally stable performance makes this LNA ideal for primary, subsequential or driver low noise gain stages. Intended applications include microwave radios, 802.16, automotive radar, VSAT, and satellite receivers. Since one part can cover several bands, the AMMP-6220 can reduce part inventory and increase volume purchase options. The LNA has integrated 50 W I/O match, DC blocking, self-bias and choke to eliminate complex tuning and assembly processes typically required by hybrid (discrete-FET) amplifiers. The package is full SMT compatible with backside grounding and I/O to simplify assembly. Applications * Microwave radio systems * Satellite VSAT, DBS up/down link * LMDS & Pt-Pt mmW Long Haul * Broadband Wireless Access (including 802.16 and 802.20 WiMax) * WLL and MMDS loops * Commercial grade military
Functional Diagram
1
2
3
8 100 pF 100 pF
4
PIN 1 2 3 4 5 6 7 8
FUNCTION Vd RFout
RFin
7
6
5 PACKAGE BASE GND
Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model (Class 1A) ESD Human Body Model (Class 0) Refer to Agilent Application Note A004R: Electrostatic Discharge Damage and Control.
AMMP-6220 Absolute Maximum Ratings [1] Symbol Vd Id Pin Tch Tstg Tmax Parameters/Conditions Positive Drain Voltage Drain Current CW Input Power Operating Channel Temp. Storage Case Temp. Maximum Assembly Temp. (60 sec max.) Units V mA dBm C C C Min. Max. 7 100 15 +150 +150 +300
-65
Note: 1. Operation in excess of any one of these conditions may result in permanent damage to this device.
AMMP-6220 DC Specifications/Physical Properties [1] Symbol Parameters and Test Conditions Id Drain Supply Current (under any RF power drive and temperature) (Vd = 3.0 V) qch-b Thermal Resistance[2] (Backside temperature, Tb = 25C) Units mA Min. Typ. 55 Max. 70
C/W
27
Notes: 1. Ambient operational temperature TA = 25C unless otherwise noted. 2. Channel-to-backside Thermal Resistance (T channel (T c) = 34C) as measured using infrared microscopy. Thermal Resistance at backside temperature (Tb ) = 25C calculated from measured data.
AMMP-6220 RF Specifications [3, 4, 6] TA= 25C, Vd = 3.0 V, Id(Q) = 55 mA, Zo = 50 W Symbol Gain NF P-1dB OIP3 RLin RLout Isol Parameters and Test Conditions Small-signal Gain[5] Noise Figure into 50 W[5] Output Power at 1dB Gain Compression Third Order Intercept Point; f = 100 MHz; Pin = -20 dBm Input Return Loss Output Return Loss Reverse Isolation Units dB dB dBm dBm dB dB dB Typical 22 2.5 +10 +20 -12 -16 -45 Sigma 0.5 0.2 0.8 1.1 0.3 0.7 0.5
Notes: 3. Small/Large -signal data measured in a fully de-embedded test fixture form TA = 25C. 4. Pre-assembly into package performance verified 100% on-wafer per AMMC-6220 published specifications. 5. This final package part performance is verified by a functional test correlated to actual performance at one or more frequencies. 6. Specifications are derived from measurements in a 50 W test environment. Aspects of the amplifier performance may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Gopt) matching.
2
AMMP-6220 Typical Performances (TA = 25C, Vd =3 V, ID = 55 mA, Zin = Zout = 50 W unless otherwise stated)
Note: These measurements are in 50 W test environment. Aspects of the amplifier performance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise (Gopt) matching.
25
0 -10
0
20
-5
-20
S21 (dB) S11 (dB)
S21 (dB)
15
-30 -40
-10
10
5
-15
-50 -60
0
4
6
8
10
12
14
16
18
20
22
4
6
8
10
12
14
16
18
20
22
-20
4
6
8
10
12
14
16
18
20
22
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Gain.
Figure 2. Isolation.
Figure 3. Input return loss.
0 -5 -10
S22 (dB)
4.0 3.5
OP-1dB & OIP3 (dBm)
25
3.0 2.5
NF (dB)
20
15
-15 -20 -25 -30
2.0 1.5 1.0 0.5
10 P-1dB OIP3
5
4
6
8
10
12
14
16
18
20
22
0
6
8
10
12
14
16
18
20
0
6
8
10
12
14
16
18
20
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 4. Output return loss.
Figure 5. Noise figure.
Figure 6. Typical power, OP-1dB and OIP3.
30 25 20
S21 (dB) S12 (dB)
0 -10 -20 -30 -40 +25C -40C +85C
S11 (dB)
0 +25C -5 -40C +85C -10
15 10 5 0 +25C -40C +85C
-15 -50 -60 -20
4
6
8
10
12
14
16
18
20
22
4
6
8
10
12
14
16
18
20
22
4
6
8
10
12
14
16
18
20
22
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 7. Gain over temperature.
Figure 8. Isolation over temperature.
Figure 9. Input return loss over temperature.
3
AMMP-6220 Typical Performances (TA = 25C, Vd = 3 V, ID = 55 mA, Zin = Zout = 50 W unless otherwise stated)
Note: These measurements are in 50 W test environment. Aspects of the amplifier performance may be improved over a narrower bandwidth by application of additional conjugate, linearity or low noise (Gopt) matching.
0 +25C -5 -10
S22 (dB)
4.0 +25C 3.5 3.0 2.5
NF (dB)
62 +25C 60 58 -40C +85C -40C +85C
-40C +85C
-15 -20 -25 -30
2.0 1.5 1.0 0.5
Idd (mA)
6 8 10 12 14 16 18 20
56 54 52 50 3.0
4
6
8
10
12
14
16
18
20
22
0
3.5
4.0 Vdd (V)
4.5
5.0
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 10. Output return loss over temperature.
Figure 11. NF over temperature.
Figure 12. Bias current over temperature.
25
0 3V -10 -20
0 3V -5
S11 (dB)
20
4V 5V
4V 5V
S21 (dB)
S12 (dB)
15
-30 -40
-10
10 3V 5 0 4V 5V 4 6 8 10 12 14 16 18 20 22
-15 -50 -60 -20
4
6
8
10
12
14
16
18
20
22
4
6
8
10
12
14
16
18
20
22
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 13. Gain over Vdd.
Figure 14. Isolation over Vdd.
Figure 15. Input RL over Vdd.
0 3V -5 -10
S22 (dB)
3.0
4V 5V
25
2.5 2.0
OIP3 (dBm)
20
-15 -20 -25 -30
NF (dB)
15
1.5 1.0 0.5 0 3V 4V 5V
10
3V 4V 5V
5
4
6
8
10
12
14
16
18
20
22
6
8
10
12
14
16
18
20
0
6
8
10
12
14
16
18
20
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 16. Output return loss over temperature.
Figure 17. Noise figure over Vdd.
Figure 18. OIP3 over Vdd.
4
AMMP-6220 Typical Scattering Parameters[1] (TA = 25C, Vd = 3 V, Zo = 50 W)
S11 Freq GHz
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0
S21 Mag
0.845 0.888 0.955 0.585 0.825 0.851 0.724 0.832 0.585 0.370 0.252 0.187 0.160 0.150 0.150 0.149 0.149 0.155 0.165 0.191 0.218 0.242 0.268 0.287 0.299 0.305 0.297 0.294 0.289 0.283 0.274 0.267 0.241 0.217 0.203 0.205 0.225 0.268 0.326 0.398 0.471 0.534 0.554 0.581 0.618 0.675 0.737
S12 Mag
0.036 0.292 2.027 3.420 2.051 6.764 9.563 13.836 15.077 15.218 15.198 14.717 14.575 14.429 14.408 14.455 14.462 14.624 14.926 15.226 15.497 15.483 15.450 15.143 14.518 13.724 13.168 12.858 12.536 11.970 11.796 11.331 11.208 10.720 10.474 10.158 9.847 9.413 8.500 8.140 7.703 7.055 6.535 5.881 4.894 4.288 3.822
S22 Mag
0.001 0.003 0.005 0.001 0.001 0.003 0.005 0.006 0.003 0.002 0.001 0.002 0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.006 0.008 0.008 0.008 0.010 0.009 0.010 0.009 0.009 0.008 0.009 0.011 0.012 0.012 0.012 0.012 0.011 0.012 0.011 0.011 0.010 0.010 0.009 0.007 0.005 0.004 0.003 0.003
INPUT REFERENCE PLANE FOR S-PARAMETERS
DB
-1.46 -1.03 -0.40 -4.65 -1.67 -1.39 -2.80 -1.59 -4.66 -8.62 -11.96 -14.57 -15.90 -16.48 -16.49 -16.53 -16.56 -16.19 -15.63 -14.36 -13.22 -12.30 -11.45 -10.83 -10.47 -10.32 -10.53 -10.62 -10.79 -10.97 -11.25 -11.47 -12.36 -13.30 -13.86 -13.77 -12.94 -11.42 -9.73 -8.00 -6.54 -5.44 -5.12 -4.72 -4.17 -3.40 -2.65
Phase
65.6 -4.4 -83.9 -150.2 153.6 72.8 18.7 -65.0 -144.6 148.4 93.4 48.4 12.5 -21.7 -58.8 -100.8 -147.1 161.1 108.2 54.8 3.0 -50.7 -102.0 -154.6 153.2 101.7 52.2 8.9 -33.2 -67.4 -109.8 -152.2 168.0 132.5 99.5 67.3 32.0 -6.3 -49.1 -94.4 -140.6 173.4 128.5 86.1 44.3 0.9 -44.6
dB
-28.9 -10.6 6.1 10.6 6.2 16.6 19.6 22.8 23.5 23.6 23.6 23.3 23.2 23.1 23.1 23.2 23.2 23.3 23.4 23.6 23.8 23.7 23.7 23.6 23.2 22.7 22.3 22.1 21.9 21.5 21.4 21.0 20.9 20.6 20.4 20.1 19.8 19.4 18.5 18.2 17.7 16.9 16.3 15.3 13.7 12.6 11.6
Phase
-62.0 -147.1 96.8 -71.3 -104.2 -178.3 93.3 9.3 -72.4 -145.1 150.4 90.5 33.6 -20.9 -74.7 -126.9 -178.2 131.2 80.4 29.4 -20.8 -72.0 -122.8 -173.1 135.7 87.2 38.7 -8.5 -56.2 -102.6 -151.3 162.1 115.8 69.0 21.3 -25.9 -74.5 -121.1 -169.0 142.8 93.3 45.0 -3.1 -54.0 -102.8 -147.1 168.3
dB
-60 -51 -46 -56 -61 -49 -45 -44 -50 -55 -58 -54 -52 -51 -47 -47 -46 -45 -43 -44 -42 -41 -41 -40 -40 -39 -40 -40 -42 -40 -39 -38 -38 -38 -38 -39 -38 -39 -39 -40 -40 -41 -43 -45 -47 -49 -50
Phase
70.9 12.1 -72. 136.7 143.5 -86.3 140.2 26.4 -66.8 -116.2 153.4 89.9 33.2 -16.5 -46.2 -85.8 -121.8 -155.9 159.4 130.7 88.0 49.2 14.5 -26.9 -66.8 -104.7 -146.3 174.6 138.1 116.4 77.9 38.0 -5.3 -40.0 -82.3 -118.5 -161.5 162.1 124.7 79.8 35.1 2.9 -41.2 -84.6 -136.3 -162.8 134.1
dB
-4.8 -9.6 -8.8 -6.3 -6.1 -9.3 -10.8 -15.5 -16.9 -16.7 -17.5 -19.5 -22.7 -24.6 -23.7 -21.9 -21.0 -21.3 -22.6 -23.8 -23.4 -21.3 -19.7 -17.8 -16.0 -14.4 -13.5 -13.2 -13.6 -12.7 -12.1 -12.1 -13.1 -14.2 -15.4 -16.5 -16.8 -16.8 -16.5 -16.1 -16.5 -17.3 -21.9 -18.0 -11.5 -9.0 -7.7
Mag
0.570 0.330 0.361 0.483 0.491 0.342 0.286 0.166 0.141 0.146 0.132 0.106 0.073 0.059 0.065 0.080 0.089 0.086 0.074 0.064 0.067 0.086 0.102 0.127 0.157 0.189 0.211 0.218 0.208 0.231 0.247 0.246 0.220 0.194 0.170 0.148 0.144 0.143 0.148 0.156 0.149 0.136 0.080 0.126 0.265 0.355 0.409
Phase
85.5 38.7 18.1 -46.1 -118.9 174.4 125.8 79.4 64.2 31.4 -8.7 -51.8 -103.7 -172.2 119.7 70.3 31.0 -3.6 -29.9 -46.2 -59.0 -90.7 -130.4 179.7 128.3 79.9 34.8 -4.6 -38.0 -65.0 -101.8 -140.0 179.3 139.1 94.9 44.7 -5.1 -51.5 -92.9 -132.8 -167.4 159.4 138.2 178.1 141.6 100.9 61.8
Note: Data obtained from ICM fixture measurements fully de-embedded to package edge.
OUTPUT REFERENCE PLANE FOR S-PARAMETERS (VIEW FROM PACKAGE BOTTOM)
5
Biasing and Operation The AMMC-6220 is normally biased with a single positive drain supply connected to both VD pin through bypass capacitors as shown in Figure 19. The recommended supply voltage is 3 V. It is important to have 0.1 F bypass capacitor, and the capacitor should be placed as close to the component as possible. The AMMC-6220 does not require a negative gate voltage to bias any of the three stages. No ground wires are needed because all ground connections are made with plated through-holes to the backside of the package. Refer the Absolute Maximum Ratings table for allowed DC and thermal conditions.
VD (TYP. 3 V)
0.1 F
1
2
3
RFin 8 100 pF 100 pF 4
RFout
7
6
5 PACKAGE BASE GND
Figure 19. Typical application.
VD
RFout RFin
Figure 20. Simplified MMIC schematic.
Figure 21. Demonstration board (available upon request).
6
Outline Drawing
1 2 3
0.200 (5.08)
8
AMMP XXXX YWWDNN
7 6 5 0.200 (5.08) FRONT VIEW
4
Recommended SMT Attachment The AMMP Packaged Devices are compatible with high volume surface mount PCB assembly processes. The PCB material and mounting pattern, as defined in the data sheet, optimizes RF performance and is strongly recommended. An electronic drawing of the land pattern is available upon request from Agilent Sales & Application Engineering. Manual Assembly 1. Follow ESD precautions while handling packages. 2. Handling should be along the edges with tweezers. 3. Recommended attachment is conductive solder paste. Please see recommended solder reflow profile. Conductive epoxy is not recommended. Hand soldering is not recommended. 4. Apply solder paste using a stencil printer or dot placement. The volume of solder paste will be dependent on PCB and component layout and should be controlled to ensure consistent mechanical and electrical performance. 5. Follow solder paste and vendor's recommendations when developing a solder reflow profile. A standard profile will have a steady ramp up from room temperature to the pre-heat temperature to avoid damage due to thermal shock. 6. Packages have been qualified to withstand a peak temperature of 260C for 20 seconds. Verify that the profile will not expose device beyond these limits.
0.075 (1.91) SIDE VIEW
Figure 22.
0.114 (2.90) 0.011 (0.28) 0.018 (0.46) 0.014 (0.365) 3 2 1
0.016 (0.40) 0.126 (3.2) 0.059 (1.5) 4 8
0.100 (2.54) 0.029 (0.75) 5 0.016 (0.40) 6 7
0.012 (0.30)
0.028 (0.70) 0.100 (2.54) 0.93 (2.36) BACK VIEW NOTES: 1. INDICATES PIN 1 2. DIMENSIONS ARE IN INCHES (MILLIMETERS) 3. DIMENSIONAL TOLERANCES: 0.002 INCH (0.5mm)
Figure 23.
Suggested PCB Material and Land Pattern
0.093 (2.36) 0.010 (0.25) 0.011 (0.28) 0.016(0.40) 0.0095 (0.24)
0.126 (3.20) 0.059 (1.50) 0.020 (0.50)
0.016 (0.40) 0.012 (0.30) GROUND VIAS SHOULD BE SOLDER FILLED
0.018 (0.46) 0.018 (0.46) INCHES (MILLIMETERS). MATERIAL IS ROGERS RO4350, 0.010-INCH THICK. 0.114 (2.90)
0.0095 (0.024)
Figure 24.
7
Solder Reflow Profile The most commonly used solder reflow method is accomplished in a belt furnace using convection heat transfer. The suggested reflow profile for automated reflow processes is shown in Figure 25. This profile is designed to ensure reliable finished joints. However, the profile indicated in Figure 25 will vary among different solder pastes from different manufacturers and is shown here for reference only.
300 PEAK = 250 5C 250
TEMPERATURE (C)
MELTING POINT = 218C 200 150 100 50 RAMP 1 0 0 50 PREHEAT 100 RAMP 2 150 TIME (SECONDS) REFLOW 200 COOLING 250 300
Figure 25. Suggested lead-free reflow profile for SnAgCu solder paste.
Stencil Design Guidelines A properly designed solder screen or stencil is required to ensure optimum amount of solder paste is deposited onto the PCB pads. The recommended stencil layout is shown in Figure 26. The stencil has a solder paste deposition opening approximately 70% to 90% of the PCB pad. Reducing stencil opening can potentially generate more voids underneath. On the other hand, stencil openings larger than 100% will lead to excessive solder paste smear or bridging across the I/O pads. Considering the fact that solder paste thickness will directly affect the quality of the solder joint, a good choice is to use a laser cut stencil composed of 0.127 mm (5 mils) thick stainless steel which is capable of producing the required fine stencil outline. The combined PCB and stencil layout is shown in Figure 27.
0.70 0.60
1.60 0.95 0.36 1.80
0.9550
0.36 0.27
0.36 0.40 4x - R0.14
Figure 26. Stencil outline drawing (mm).
0.40 0.46
0.60
0.67
0.36 0.40
3.20 1.80
0.40
0.36
0.30
0.27
1.60 2.90
STENCIL OPENING
Figure 27. Combined PCB and stencil layouts (mm).
8
AMMP-6220 Part Number Ordering Information Part Number AMMP-6220-BLK AMMP-6220-TR1 AMMP-6220-TR2 Devices Per Container 10 100 500 Container Antistatic bag 7" Reel 7" Reel
Device Orientation (Top View)
4 mm
12 mm AMMP XXXX AMMP XXXX AMMP XXXX
Carrier Tape and Pocket Dimensions
4.00 0.10 SEE NOTE #2 2.00 0.05 B 1.55 0.05 R 0.50 TYP. 1.75 0.10 5.50 0.05 12.00 0.10 Bo A Ko SECTION B-B Ao Ao: Bo: Ko: PITCH: WIDTH: 5.30 5.30 2.20 8.00 12.00 Ao MIN. 5.20 NOM. 5.30 MAX. 5.40 Bo 5.20 5.30 5.40 Ko 2.10 2.20 2.30 A Ao
Bo
B
8.00 0.10
1.50 (MIN.)
Ko
0.30 0.05 SECTION A-A NOTES: 1. Ao AND Bo MEASURED AT 0.3 mm ABOVE BASE OF POCKET. 2. 10 PITCHES CUMULATIVE TOLERANCE IS 0.2 mm. 3. DIMENSIONS ARE IN MILLIMETERS (mm).
9
www.agilent.com/semiconductors
For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394 India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only) Korea: (+65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044 Taiwan: (+65) 6755 1843 Data subject to change. Copyright (c) 2005 Agilent Technologies, Inc. February 14, 2005 5989-2278EN


▲Up To Search▲   

 
Price & Availability of AMMP-6220-TR2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X